

Subject Code: BEE303

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2024-25

BASIC SIGNALS & SYSTEMS

TIME: 3 HRS

M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably. **SECTION A**

1. Attempt *all* questions in brief.

$2 \ge 07 = 14$

	r i i i i i i i i i i i i i i i i i i i			
Q no.		СО	Lev el	
a.	Define continuous time and discrete time signal with their waveform.	CO1	K2	
b.	What are the major classifications of the signal?	CO1	K2	
c.	What do you understand by analogous system? Explain with example	CO1	K2	
d.	State Time Shifting property in relation to Fourier series.	CO2	K4	
e.	Determine the Laplace transform, pole and zero locations for following	CO3	K4	
	time function			
	e^{-at} u(t) for a >0;			
	e^{-at} u(t) for a < 0;			
	6			S.
f.	The system matrix of a linear time-invariant system is	CO4	K3	
	$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$			$\left(\cdot \right)$
	Determine the state transition matrix by power series method. Also,		NO.	·
	verify the result by Laplace transform method.	Ň		
g.	If $Z[f(t)] = F(z)$,	CO5	K4	
	Determine Z[f(t+T)]	52		

SECTION B

2. Attempt any *three* of the following:

07 x 3 = 21

Q	2	CO	Lev
no.			el
a.	Discuss periodic and non-periodic signals. Also show that the sinusoidal	CO1	K2
	signal x(t)=sin(w_0 t + θ) is periodic with period $\frac{2\pi}{w_0}$.		
b.	Differentiate between CTFT and DTFT. Also Give the Existence of	CO2	K4
	DTFT		
c.	(i) State and prove initial value theorem for Laplace Transform.	CO3	K4
	(ii) Consider the transfer function of a network given by:		
	$F(s) = \frac{10s(s+7)}{(s+1)(s+8)(s+10)}$		
	$\frac{1}{(s+1)(s+8)(s+10)}$		
	Find the initial and final value of the function.		
d.	Obtain the solution of nonhomogeneous state equation using Laplace	CO4	K3
	transformation		
e.	Discuss the properties of Region of Convergence (ROC) of z-transform.	CO5	K4
	Also solve the following first order linear difference equation,		
	given $w(0) = -1$		
	$w^{*}(t+T)+2w^{*}(t) = 5 t^{*}$		
	Where function with asterisk* are defined only at $t=nT$ for $n=0,1,2$		
	• • • • •		

Printed Page: 2 of 3

Subject Code: BEE303 Roll No:

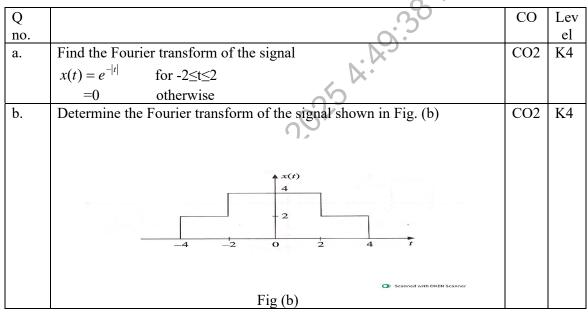
BTECH (SEM III) THEORY EXAMINATION 2024-25 BASIC SIGNALS & SYSTEMS

TIME: 3 HRS

PAPER ID-312056

M.MARKS: 70

SECTION C


3. Attempt any *one* part of the following:

$07 \ge 1 = 07$

0		00	т	
Q		CO	Lev	
no.			el	
a.	Explain Force Voltage and Force Current analogue in brief. For the electromechanical system shown in Fig. (a), Determine the transfer function $X(s)/V(s)$.		K2	
	$+ \circ \underbrace{R}_{i(t)} \underbrace{M}_{i(t)} \underbrace{K}_{i(t)} $			1.34
	Scanned with GKEN Scanner	~	5	
b.	$t; 0 \ll t \le 1$	CO1	K2	
	A signal x(t) is given by x(t)= $\{1 - t; 1 \ll t \le 2 \text{ Sketch x(t) and } x_a(t)\}$	K)		
	(0; otherwise	S		
	for $T_0=2$ and $T_0=1$.			

4. Attempt any *one* part of the following:

 $07 \ge 1 = 07$

Printed Page: 3 of 3 Subject Code: BEE303

Roll No:

BTECH (SEM III) THEORY EXAMINATION 2024-25 **BASIC SIGNALS & SYSTEMS**

TIME: 3 HRS

PAPER ID-312056

M.MARKS: 70

5.	Attempt any one part of the following:	07 x 1	= 07
Q		CO	Lev
no.			el
a.	Given $x(t) = e^{-t}u(t)$. Find the inverse Laplace transform of $e^{-3s}X(2s)$.	CO3	K4
b.	A system is described by the differential equation	CO3	K4
	$\frac{d^{2} y(t)}{dt^{2}} + 5 \frac{dy(t)}{dt} + 4 y(t) = x(t)$		
	Determine the response of the system to an input $x(t) = e^{-2t}u(t)$ applied		
	at t=0. The initial conditions are $y(0^-) = 2$ and $dy(0^-)/dt = -1$		

6. Attempt any one part of the following:

$07 \ge 1 = 07$

-	-	r	r	-
Q		CO	Lev	0
no.			el	K2
a.	A state variable description of a system is given by the matrix equation	CO4	K3	\wedge
	$ \begin{array}{c} \cdot \\ X \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \end{bmatrix} r(t) \qquad y = \begin{bmatrix} 1 & 1 \end{bmatrix} X \\ Find (a) \text{ the transfer function } Y(s)/R(s) \end{array} $	2	5	
	(b) the Eigen values	<u><u></u></u>		
b.	What is homogeneous and non-homogeneous state equation? Obtain the	CO4	K3	
	complete solution of non-homogeneous state equation.)		

Attempt any one part of the following: 7.

$07 \ge 1 = 07$

Q		CO	Lev
no.			el
a.	Find the inverse Z-transform of the following function:	CO5	K4
	$X(z)\frac{2z^{3}-5z^{2}+z+4}{(z-1)(z-2)}; \text{ROC}; z < 1$		
b.	A linear shift invariant system is described by the difference equation	CO5	K4
	$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + x(n-1)$		
	With y(-1)=0 and y(-2)=-1		
	Find natural response of the system		