

Printed Page: 1 of 2 Subject Code: BEE302

BTECH

Roll No:

(SEM III) THEORY EXAMINATION 2024-25 **ELECTRICAL MEASUREMENTS & INSTRUMENTATION**

TIME: 3 HRS

M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	2 x 0'	7 = 14
Q no.	Question	СО	Level
a.	What is measurement? Explain measurement system with appropriate	CO1	K1
	block diagram.		
b.	What is the difference between an ammeter and a voltmeter?	CO1	K1
c.	What is creeping in Energy Meters? How it is prevented?	CO2	K2
d.	What are the applications of bridge circuits?	CO3	K2
e.	Define turns ratio and transformation ratio for CT and PT.	CO4	K2
f.	Write down the applications of CRO in measurement.	CO4	K2
g.	What is the basic principle of piezoelectric transducer?	CO5	K3

SECTION B

5.	what is the busic principle of prezoencetile transacter.		110
	SECTION B		
2.	Attempt any <i>three</i> of the following:	07 x 3	3 = 21
a.	What is Limiting error in measurement?	CO1	K1
	Three resistors are specified as :		
	$R_1 = 200\Omega \pm 5\%$, $R_2 = 100\Omega \pm 5\%$ and $R_3 = 50\Omega \pm 5\%$		
	Determine the magnitude of the resultant resistance and the limiting		
	error in percentage and in ohms if the resistances are connected in series.		ND.
b.	What are the types of watt meters in measurement systems? Explain two	CO2	K2
	watt meter method for power measurement in balanced and unbalanced	n .	Ť
	three phase system.	2	
c.	Explain the working principle of potentiometers. With the help of neat	CO3	K2
	diagram explain D.C. Crompton's potentiometer.		
d.	Draw and explain the equivalent circuit and phasor diagram of current	CO4	K2
	transformer (C.T.). State the ratio error present in current transformer.		
	Also differentiate between current transformer and potential transformer.		
e.	Discuss factors for selecting a transducer. Explain pressure capacitance	CO5	K3
	transducer with a neat diagram. State advantages and disadvantages of a		
	capacitive transducer.		
L			1

SECTION C

3.	Attempt any <i>one</i> part of the following:	07 x 1	l = 07
a.	Illustrate the construction and operation of attraction and repulsion type	CO1	K1
	of moving iron instruments. Also derive the expression of deflecting		
	torque. Enlist the advantages, disadvantages of these instruments.		
b.	Explain the working principle of PMMC instruments.	CO1	K1
	How the current range of PMMC instrument extended with the help of		
	shunts?		

4.	Attempt any one part of the following:	07 x 1	l = 07
a.	How energy is to be measured using energy meters? Explain single	CO2	K2
	phase induction type energy meter with the help of suitable diagram.		
b.	Explain the following instruments with proper diagram:	CO2	K2
	(i) Power factor meter		
	(ii) Analog frequency meter		

1 | Page

Printed Page: 2 of 2 Subject Code: BEE302

PAPER ID-311977

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2024-25 ELECTRICAL MEASUREMENTS & INSTRUMENTATION

TIME: 3 HRS

M.MARKS: 70

5.	Attempt any one part of the following:	07 x 1	l = 07
a.	Derive balance equation of Maxwell's Inductance-Capacitance Bridge	CO3	K2
	along with its phasor diagram.		
	In an Maxwell's bridge the arms are adjusted as:		
	Arm AB: non-reactive resistance of 700Ω		
	Arm CD: non-reactive resistance of 300Ω		
	Arm AD: non-reactive resistance of 1200Ω in parallel with capacitor of		
	0.5 μF.		
	Under balance condition find the components of arm BC (R_x and L_x).		
b.	Explain Schering Bridge for the measurement of unknown capacitance.	CO3	K2
	How the measure the loss angle and dissipation factor using Schering		
	Bridge?		
	The Schering Bridge has the following constants:		
	Arm AB – capacitor of 1μ F in parallel with $1.2k\Omega$ resistance		
	Arm AD – resistance of $4.7k\Omega$, Arm BC – capacitor of 1µF and Arm		
	CD – unknown capacitor C_x and resistance R_x		
	Calculate the unknown capacitance and its dissipation factor. The		
	frequency is given as 0.5 kHz.		
			5

6.	Attempt any <i>one</i> part of the following:	07 x 1	= 07
a.	Describe the construction and working of general purpose CRO with its	CO4	K2
	block diagram and explain its components.	S .	Ì
b.	Define spectrum analyzer. Classify different types of spectrum analyzers	CO4	K2
	and explain basic spectrum analyzer with neat block diagram. Also give	Þ	1
	the applications of wave analyzers.		1

7.	Attempt any <i>one</i> part of the following:	07 x 1	l = 07
a.	What do you understand by transducers? Explain the construction and	CO5	K3
	working principle of LVDT.		
b.	Explain the principle, construction and working of strain gauge	CO5	K3
	transducer and formulate the expression for gauge factor in terms of		
	Poisson's ratio.		

08-1121-2025

N3A