

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2024-25

ELECTRONIC DEVICES

TIME: 3 HRS

M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	2 x 07	7 = 14	
Q no.	Question	СО	Level	
a.	Define the term 'Effective mass'.	1	K2	
b.	Why Silicon is preferred over Germanium in electronic devices?	1	K2	
c.	State 'Einstein relations' in semiconductor.	2	K1	
d.	Differentiate between Schottky barrier diode and p-n junction diode.	3	K2	
e.	Why is it necessary to stabilize the operating point of a transistor amplifier?	4	K2	
f.	A pnp transistor is operating in the active region with collector current 6.4 mA and emitter current 6.6 mA. Calculate the large signal current gain (α)?	4	K3	
g.	Why MOSFET is preferred over BJT in switching?	5	K2	\mathbf{b}
	SECTION B)
2.	Attempt any <i>three</i> of the following:	07 x 3	3 = 21	
0	Overtier	CO	T avral	

SECTION B

2.	Attempt any <i>three</i> of the following:	07 x 3	3 = 21
Q no.	Question	СО	Level
a.	What is Fermi energy level? Sketch the energy band diagram for an	1	K2
	intrinsic semiconductor, n-type and p-type extrinsic semiconductor?		
	Indicate the position of the Fermi energy level, the donor and acceptor level?	S.	
b.	With suitable diagram prove that the barrier potential (V ₀) in an open	2	K3
	circuited p-n junction is:		
	$V_0 = V_T ln\left(\frac{N_A N_D}{n_i^2}\right)$		
	Where, n_i is intrinsic carrier concentration, N_A , N_D are the concentration		
	of acceptor and donor ions, and V_T is the voltage equivalent to		
	temperature.		
c.	With suitable circuit diagram explain the working of a Zener diode as a	3	K2
	voltage regulator?		
d.	An npn transistor with amplification factor (α) is operated in the	4	K3
	common base configuration. If the emitter current is 3 mA and reverse		
	saturation current is 10 μ A. Calculate the base current and the collector		
	current?		
e.	Show that transconductance gm of a JFET is related to drain current:	5	K3
	$g_m = rac{2}{ V_P } \sqrt{I_{DS} I_{DSS}}$		

SECTION C

3.	Attempt any <i>one</i> part of the following:	07 x	1 = 07
Q no.	Question	СО	Level
a.	State De-Broglie hypothesis. Calculate the De-Broglie wavelength of an electron travelling at a velocity of 10^5 m/Sec?	1	K3

Roll No:

BTECH

(SEM III) THEORY EXAMINATION 2024-25

ELECTRONIC DEVICES

TIME: 3 HRS

M.MARKS: 70

13A

b.	Write the time independent Schrodinger's wave equation and determine	1	K3
	its free electron solution.		

4.	Attempt any <i>one</i> part of the following:	07 x	1 = 07
Q no.	Question	СО	Level
a.	What is space charge region at a junction? Derive the expression for the	2	K3
	width of the space charge in a p-n junction at thermal equilibrium		
	condition?		
b.	An n type Germanium crystal has a current density of 100 A/m ² . The	2	K3
	crystal has resistivity of 0.5 Ω -m and electron mobility of 0.4 m ² /V-s.		
	Calculate the drift velocity and the time taken by the electron to travel 10		
	micrometer in the crystal. Assume q equal to 1.602×10^{-19} C.		

5.	Attempt any <i>one</i> part of the following:	07 x 1	1 = 07
Q no.	Question	СО	Level
a.	With the help of Energy band diagram explain forward and reverse bias conditions in a p-n semiconductor diode? Draw the Voltage-Current characteristics curve of P-N junction diode.	2	К3
b.	Differentiate between transition and diffusion capacitance of a p-n junction diode. Obtain an expression of the diffusion capacitance?	2	KK2

6.	Attempt any one part of the following:	07-x-1	= 07
Q no.	Question	CO	Level
a.	Draw the common emitter configuration to obtain the input and output characteristics. Explain the behavior of the transistor in active, cutoff, and saturation mode?	4	K2
b.	Draw a self bias circuit; explain quantitatively why such a circuit is an improvement on fixed bias circuit in terms of I_{co} , β , V_{BE} , and stability factor?	4	K3

3

7.	Attempt any <i>one</i> part of the following:	07 x 1	l = 07
Q no.	Question	СО	Level
a.	Differentiate between enhancement and depletion MOSFET? Explain	5	K2
	the working and characteristics of n-channel MOSFET in enhancement		
	mode?		
b.	An n-channel JFET has I_{DSS} equals to 10 mA and V_P equals to -2V.	5	K3
	Determine the minimum value of V _{DS} for pinch-off region and drain		
	current I _D for VGS equals -2V in the pinch-off region.		

N