

				Sub	ject	Cod	le: B	ME	302
Roll No:									

BTECH (SEM III) THEORY EXAMINATION 2024-25 FLUID MECHANICS & FLUID MACHINES

TIME: 3 HRS M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 07 = 14$

Printed Page: 1 of 2

Q no.	Question	CO	Level
a.	Define viscosity of fluid.	1	K 2
b.	Define surface tension.	1	K 2
c.	What is potential function in fluid flow?	2	K 2
d.	Write the rotation velocity components in a fluid flow.	2	K 2
e.	What is boundary layer thickness?	3	K 3
f.	What is impulse turbine?	4	K 3
g.	Define specific speed of a centrifugal pump.	5	K 2

SECTION B

2. Attempt any three of the following:

 $07 \times 3 = 21$

Q no.	Question	CO	Level
a.	What is a venturimeter? Prove that the discharge through an	11	K 2
	venturimeter is given by the relation	٠, ا	
	$Q = C_{d}a_{1}a_{2}\sqrt{2gh}/\sqrt{(a_{1}^{2} - a_{2}^{2})},$		
	where a ₁ =cross sectional area of pipe a ₂ =area of throat		
b.	Derive the continuity equation for a three-dimensional steady and	2	K 2
	incompressible fluid flow.		
c.	Find out the velocity distribution and shear stress distribution across a	3	K 3
	section of pipe for the viscous flow.		
d.	Derive the expression for the maximum hydraulic efficiency of a Pelton	4	K 3
	Wheel.		
e.	Compare the working principles, applications, advantages, and	5	K 2
	disadvantages of a centrifugal pump and a reciprocating pump.		

SECTION C

3. Attempt any *one* part of the following:

 $07 \times 1 = 07$

1	K 2
1	K 2
	1

				Sub	ject	Cod	le: B	ME	302
Roll No:									

BTECH (SEM III) THEORY EXAMINATION 2024-25 FLUID MECHANICS & FLUID MACHINES

TIME: 3 HRS M.MARKS: 70

4. Attempt any *one* part of the following:

07	X	1	=	07
----	---	---	---	----

Printed Page: 2 of 2

Q no.	Question	CO	Level
a.	Distinguish between:	2	K 2
	i) Steady and unsteady flow		
	ii) Uniform and no uniform flow		
	iii) Rotational and irrotational flow		
b.	The velocity components in a fluid flow are given by:	2	K 2
	$u = 2xy; v = a^2 + x^2 - y^2$		
	(i) Show that the flow is possible.		
	(ii) Derive the relative stream function.		

5. Attempt any *one* part of the following:

$07 \times 1 = 07$

Q no.	Question	CO	Level
a.	Explain the following with the suitable diagram.	3	K 3
	(i) Water Hammer		
	(ii) Siphon		
b.	An oil having viscosity of 705 poise of specific gravity 0.85 flows	3	K 3
	through a horizontal pipe of 50mm diameter with a pressure drop	N	.
	18KN/m ² per meter length of pipe. Determine		•
	(i) The flow rate of oil and the center line velocity	٦.`	
	(ii) Power required maintaining the flow in 100 m length of pipe		
	(iii) Velocity and shear stress at 8mm from the wall.		

6. Attempt any *one* part of the following:

$07 \times 1 = 07$

Q no.	Question	CO	Level
a.	Explain the construction and working of the Pelton wheel.	4	K 3
b.	A reaction turbine works at 450 r.p.m. under a head of 120 m. Its	4	K 3
	diameter atinlet is 1.2 m and the flow area is 0.4 m ² . The angles made by		
	absolute and relative velocities at inlet are 20° and 60° respectively with		
	the tangential velocity. Determine		
	(i) The volume flow rate,		
	(ii) The power developed, and		
	(iii) The hydraulic efficiency.		

7. Attempt any *one* part of the following:

$07 \times 1 = 07$

Q no.	Question	СО	Level
a.	What is an air vessel? Explain working of air vessel.	5	K 2
b.	The impeller of a centrifugal pump has an external diameter of 450 mm	5	K 2
	and internal diameter of 200 mm and it runs at 1440 r.p.m. Assuming a		
	constant radial flow through the impeller at 2.5 m/s and that the vanes at		
	exit are set back at an angle 25°, determine:		
	(i) Inlet vane angle,		
	(ii) The angle, absolute velocity of water at exit makes with the		
	tangent		
	(iii) The work done per N of water.		