				Subject Code: BAS303							
Roll No:											

Printed Page: 1 of 3

BTECH (SEM III) THEORY EXAMINATION 2024-25 MATHEMATICS-IV

TIME: 3 HRS M.MARKS: 70

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1.	Attempt all questions in brief.	2×0	7 = 14
Q no.	Question	СО	Leve 1
a.	Solve the PDE $yzp - xzq = xy$. पीडीई $yzp-xzq=xy$ को हल करें।	1	K1
b.	How many arbitrary constants in the solution of 1- dimensional wave equation 1-आयामी तरंग समीकरण के समाधान में कितने मनमाने स्थिरांक होते हैं	2	K2
c.	The first three moments of a distribution are 6,25, -41. Find the moment coefficient of skewness. एक वितरण के पहले तीन क्षण 6, 25, -41 हैं। झुकाव के क्षण गुणांक को खोजें।	3	K3
d.	Find p and q of Binomial distribution whose mean is 9 and variance 9/4. बाइनोमियल वितरण के p और q को खोजें जिनका औसत 9 और विचलन 9/4 है।	4	К3
e.	Explain the probability density function. संभाव्यता घनत्व फ़ंक्शन को समझाइए।	4	K4
f.	What do you mean of statistical quality control? आप सांख्यिकीय गुणवत्ता नियंत्रण से क्या मतलब रखते हैं?	5	K2
g.	Define the Null hypothesis. शून्य परिकल्पना को परिभाषित करें।	5	K1

SECTION B

2.	Attempt any three of the following:	07 x	3 = 07
a.	Solve: $r - 4s + 4t + p - 2q = e^{x+y} \cos(2x + 3y)$.	1	K3
	हल करें $r - 4s + 4t + p - 2q = e^{x+y}\cos(2x + 3y)$.		
b.	Solve by the method of separation of variables:	2	K3
	$4\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 3u, u = 3e^{-x} - e^{-5x}, when t = 0.$		
	चर के पृथक्करण की विधि द्वारा हल करें:		
	$4\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 3u, u = 3e^{-x} - e^{-5x}, when t = 0.$		
c.		3	K5
	(i) mean of x and y(ii)the correlation coefficient between x and y (iii) if		
	variance of x=9 then find variance of y.		
	दो प्रतिगमन समीकरण 3x+2y=26 और 6x+y=31 हैं। (i) x और y का औसत		
	निकालें (ii) x और y के बीच सहसंबंध गुणांक निकालें (iii) यदि x का		
	विचलन=9 है तो y का विचलन निकालें। चर के पृथक्करण की विधि द्वारा हल		
	करें:		
d.	If Z is a standard normal variable, find the following probabilities:	4	K5
	(i) $P(Z < 1.2)$ (ii) $P(Z > -1.2)$ (iii) $P(-1.2 < Z < 1.3)$.		
	यदि Z एक मानक सामान्य चर है, तो निम्नलिखित संभावनाएँ खोजें: (i)		
	P(Z<1.2) (ii) P(Z>-1.2) (iii) P(-1.2 <z<1.3< td=""><td></td><td></td></z<1.3<>		

विस्थापन ज्ञात करें।

					P	rinte	d Pa	ge: 2	of 3
				Sı	ıbjec	et Co	de: l	BAS	303
Roll No:									

BTECH (SEM III) THEORY EXAMINATION 2024-25 MATHEMATICS-IV

TIME: 3 HRS M.MARKS: 70

Ī	e.	What are statistical quality control techniques? Discuss the objectives	5	K4
		and advantages of SQC.		
		सांख्यिकीय गुणवत्ता नियंत्रण तकनीकें क्या हैं? SQC के उद्देश्यों और फायदों		
		पर चर्चा करें।		

SECTION C

<u>3.</u>	Attempt any <i>one</i> part of the following:	07 x	1 = 07
a.	Solve: $(x^2 - y^2 - yz)p + (x^2 - y^2 - zx)q = z(x - y)$	1	K3
	हल करें: (x^2-y^2-yz)p+(x^2-y^2-zx)q=z(x-y)		
b.	Solve: $(D^2 - DD' - 2D'^2)z = (y - 1)e^x$.	1	K3
	हल करें: (D^2-DD^'-2D^'2)z=(y-1)e^x		

4.	Attempt any <i>one</i> part of the following:	07 x	1 = 07
a.	Solve the Laplace equation	2	К3
	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, which satisfies the conditions : u(0,y) =$		
	$u(l,y) = u(x,0) = 0 \text{ And } u(x,a) = \sin \frac{n\pi x}{l}.$		
	लाप्लास समीकरण को हल करें ($\partial^2 u$)/ $[\partial x]^2 + (\partial^2 u)$ / $[\partial y]^2 = 0$,		
	जो शर्तों को संतुष्ट करता है: u(0,y)= u(1,y)=u(x,0)=0 और u(x,a)=sin nπx/11		NO
b.	A string is stretched and fastened to two points l apart, motion is started	2	K4
	by displacing the string into the form $y = k(lx - x^2)$ from which it is	5	*
	released at time t=0. Find the displacement of any point on the string at	0	
	a distance of x from one end at time t.		
	एक तार को दो बिंदुओं पर खींचा और बांधा गया है, गति को तार को y=k(lx-		
	x^2) के रूप में विस्थापित करके शुरू किया जाता है, जिसे समय t=0 पर छोड़		
	दिया जाता है। समय t पर एक छोर से x की दूरी पर तार के किसी भी बिंदु का		

5.	Attempt any	one part of	the followi	ng:	.5 ^v			07 x	1 = 07	_
a.	Fit the curv	$e y = ae^{bx}.$						3	K4	
	X	2	4	6	8	10				
	у	4.077	11.084	30.128	81.897	222	.62			
		-		7		_			_	
	वक्र	y= [ae] ^bx को							फिट	
	x	2	10	4		(5			8
	y 4.077 11.08	4 30.128 81.89	7 222.62							
b.		ll four mome					urtosis	3	K4	
	सभी चार क्षप									
	Marks	0-10	0-20 2	0-30 3	0-40	40-50	50-60		60-70	
	Stud.	1 (5 1	0 1	5	11	7		10	

6.	Attempt any one part of the following:	07 x 1	1 = 07
a.	In a certain factory turning out razor blades, there is a small chance of	4	K3
	0.002 for any blade to be defective. The blades are supplied in packets		
	of 10. Calculate the approx. no. of packets containing (i) no defective		

PAPER ID-311742

					P	rinte	d Pa	ge: 3	of 3
				Sı	ıbjec	et Co	de: l	BAS	303
Roll No:									

BTECH (SEM III) THEORY EXAMINATION 2024-25 MATHEMATICS-IV

TIME: 3 HRS M.MARKS: 70

	(ii) one defective (iii) two defective blades in a consignment of 10,000		
	packets.		
	एक निश्चित फैक्ट्री में जो रेजर ब्लेड बनाती है, किसी भी ब्लेड के दोषपूर्ण होने		
	की संभावना 0.002 है। ब्लेड 10 के पैकेट में प्रदान किए जाते हैं। 10,000 पैकेट		
	के एक consignement में (i) कोई दोषपूर्ण नहीं (ii) एक दोषपूर्ण (iii) दो		
	दोषपूर्ण ब्लेड वाले पैकेटों की अनुमानित संख्या की गणना करें।		
b.	A die is tossed thrice. A success is getting 1 or 6 on a toss. Find the mean	4	K5
	and variance of the number of successes.		
	एक पासा तीन बार फेंका जाता है। सफलता का मतलब है एक फेंक में 1 या 6		
	आना। सफलताओं की संख्या का औसत और विचलन ज्ञात करें।		

7.	Attempt any one part of the following:			$07 \times 1 = 07$
a.	Two independent samples of 8 and 7 items respectively had the following values of the variables: Is the difference between the means of the sample significant? दो स्वतंत्र नमूनों में क्रमशः 8 और 7 वस्तुओं के निम्नलिखित मान थे: क्या नमूने के औसत के बीच का अंतर महत्वपूर्ण है?			5 K4
	Samp 9 11	13 11 15	9 12	14
	le I			40
	Sam. 10 12	10 14 9	8 10	
	2			
b.	By using Chai-square to	est, find whether there is	any association bet	tween 5 K3
income level and type of schooling: चाई-स्कायर परीक्षण का उपयोग करके, यह पता करें कि आय स्तर और स्कूलिंग के प्रकार के बीच कोई संबंध है या नहीं:				10
				: और 📗 📗
	Income Public school		Govt.School	·
	Low	200	400	
	High	1000	400	
		1	(. O ′	
OA-Mat. 2025				