

BTECH
(SEM II) THEORY EXAMINATION 2024-25
ENGINEERING PHYSICS

TIME: 3 HRS**M.MARKS: 70**

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A

1. Attempt all questions in brief.

02 x 7 = 14

Qno.	Question	CO	Level
a.	What do you mean by population inversion? जनसंख्या व्युत्क्रमण से आप क्या समझते हैं?	CO4	K1
b.	What is Wein's displacement law? वेन का विस्थापन नियम क्या है?	CO1	K1
c.	Define Dispersive power of grating. ग्रेटिंग की परिक्षेपण शक्ति को परिभाषित करें।	CO3	K1
d.	An electromagnetic wave of frequency 10 MHz is incident normally on a good conductor (e.g., copper) with conductivity $\sigma = 5.8 \times 10^7$ S/m and relative permeability $\mu_r = 1$. What is the skin depth δ of the wave in the conductor? (Use $\mu_0 = 4\pi \times 10^{-7}$ H/m) एक विद्युत चुंबकीय तरंग जिसकी आवृत्ति 10 MHz है, सामान्य रूप से एक अच्छे चालक (जैसे कि तांबा) पर आपतित होती है, जिसकी चालकता $\sigma = 5.8 \times 10^7$ S/m और सापेक्ष चुंबकीय पारगम्यता $\mu_r = 1$ है। चालक में तरंग की स्थिति δ क्या होगी?	CO2	K3
e.	What is de Broglie wave for a moving particle at temperature T? ताप T पर गतिमान कण के लिए दे-ब्रॉग्ली तरंग क्या है?	CO1	K2
f.	Show that perfect diamagnetism is an essential property of the superconductor. दर्शाइए कि पूर्ण प्रतिचुम्बकत्व अति चालक का एक आवश्यक गुण है।	CO5	K2
g.	A Fiber made of silicon with a diameter of the core is such that it consists of core and claddings refractive indexes of 1.40 and 1.37. Find the numerical aperture of Fiber. सिलिकॉन से बना एक फाइबर जिसका कोर व्यास ऐसा है कि इसमें कोर और क्लैडिंग के अपवर्तनांक 1.40 और 1.37 हैं। फाइबर का संख्यात्मक एपर्चर ज्ञात करें।	CO4	K3

SECTION B

2. Attempt any three of the following:

07 x 3 = 21

Qno.	Question	CO	Level
a.	Derive the conditions of Maxima & Minima in reflected light in a thin film of uniform thickness. पतली समान मोटाई की फिल्म में परावर्तित प्रकाश में अधिकतम एवं न्यूनतम तीव्रताओं की स्थितियाँ व्युत्पन्न करें।	CO3	K2
b.	Derive differential form of Maxwell's equations. मैक्सवेल के समीकरणों का अवकल रूप ज्ञात कीजिए।	CO2	K2
c.	Discuss construction and working of He-Ne Laser. He-Ne लेजर के निर्माण और कार्य प्रणाली पर चर्चा करें।	CO4	K2
d.	Derive Expression for diameter of dark ring in Newton's rings. न्यूटन के वलयों में अदीप्त वलय के व्यास के लिए व्याजक व्युत्पन्न कीजिए।	CO3	K2
e.	Describe the experiment of Davisson and Germer to demonstrate the wave character of electrons. इलेक्ट्रॉनों के तरंग चरित्र को प्रदर्शित करने के लिए डेविसन और जर्मर के प्रयोग का वर्णन करें।	CO1	K2

SECTION C

3. Attempt any one part of the following:

07 x 1 = 07

BTECH
(SEM II) THEORY EXAMINATION 2024-25
ENGINEERING PHYSICS

TIME: 3 HRS**M.MARKS: 70**

Qno	Question	CO	Level
a.	Explain the construction and working principle of an optical fiber. Define acceptance angle and numerical aperture, and derive the relation between them. एक ऑप्टिकल फाइबर की संरचना और कार्य सिद्धांत को समझाइए। स्वीकृति कोण और न्यूमेरिकल एपरचर को परिभाषित करें तथा उनके बीच का संबंध व्युत्पन्न कीजिए।	CO 4	K2
b.	Derive change in wavelength in Compton scattering. Why Compton effect is not observed for visible light? कॉम्पटन प्रक्रिया में तरंगदैर्घ्य में परिवर्तन व्युत्पन्न करें। दृश्य प्रकाश के लिए कॉम्पटन प्रभाव क्यों नहीं देखा जाता है?	CO 1	K2

4. Attempt any one part of the following:**07 x 1 = 07**

Q no.	Question	CO	Level
a.	Derive relation between Einstein's coefficients. आइंस्टीन के गुणाकारों के बीच संबंध निकालो।	CO4	K2
b.	State and Prove Poynting theorem. पॉइंटिंग प्रमेय बताएं और सिद्ध करें।	CO2	K2

5. Attempt any one part of the following:**07 x 1 = 07**

Qno	Question	CO	Level
a.	Discuss Fraunhofer diffraction of light at a double slit and obtain the conditions for diffraction and interference maxima and minima. द्विं-झिरी पर प्रकाश के फ्राउनहोफर विवर्तन पर चर्चा करें तथा विवर्तन और व्यतिकरण अधिकतम और न्यूनतम के लिए स्थितियाँ प्राप्त करें।	CO 3	K2
b.	Derive the wave equations for electric and magnetic fields in vacuum using Maxwell's equations. Discuss the transverse nature of electromagnetic waves and explain how the electric and magnetic fields are oriented with respect to the direction of propagation. मैक्सवेल समीकरणों का उपयोग करके निवात में विद्युत और चुंबकीय क्षेत्र की तरंग समीकरणें व्युत्पन्न करें। विद्युत चुंबकीय तरंगों की अनुप्रस्थ प्रकृति पर चर्चा करें और यह समझाइए कि विद्युत और चुंबकीय क्षेत्र तरंग के संचरण दिशा के सापेक्ष किस प्रकार उमुख होते हैं।	CO 2	K2

6. Attempt any one part of the following:**07 x 1 = 07**

Qno.	Question	CO	Level
a.	(i) What are Newton's rings? Why are they circular in shape? Newton's rings are observed in reflected light of wavelength 5900Å. The diameter of 10 th dark ring is 0.50 cm. Find the radius of curvature of the lens. न्यूटन के छल्ले क्या हैं? वे गोलाकार क्यों होते हैं? न्यूटन के छल्ले 5900 Å तरंग दैर्घ्य के परावर्तित प्रकाश में देखे जाते हैं। 10वें अंदरूनी बल्य का व्यास 0.50 सेमी है। लेंस की वक्रता त्रिज्या ज्ञात कीजिए। (ii) A monochromatic light of wavelength $\lambda=600$ nm is incident normally on a plane transmission grating having 5000 lines per cm. At what angle will the first-order principal maximum be observed? 600 nm तरंग दैर्घ्य वाली एक एकवर्णीय प्रकाश तरंग एक समतल ट्रांसमिशनग्रेटिंग पर सामान्य रूप से गिरती है जिसमें प्रति सेमी 5000 रेखाएँ हैं। पहले ग्रेम के प्रमुख अधिकतम को किस कोण पर कहाँ देखा जाएगा?	CO3	K3
b.	Obtain the normalized wave function and energy Eigen values for a particle in a box. एक बॉक्स में एक कण के लिए सामान्यीकृत तरंग फंक्शन और ऊर्जा आइजेनमान प्राप्त करें।	CO1	K3

7. Attempt any one part of the following:**07 x 1 = 07**

Roll No:														
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--

BTECH
(SEM II) THEORY EXAMINATION 2024-25
ENGINEERING PHYSICS

TIME: 3 HRS**M.MARKS: 70**

Qno.	Question	CO	Level
a.	<p>The superconducting transition temperature of Lead is 7.26 K. The initial field at 0 K is 64×10^3 Amp m⁻¹. Calculate the critical field at 5 K. लेड का अतिचालक संक्रमण तापमान 7.26 K है। 0 K पर प्रारंभिक क्षेत्र 64×10^3 Amp m⁻¹ है। 5K पर क्रांतिक क्षेत्र की गणना करें।</p> <p>What are nano materials? Explain briefly the basic concepts of Quantum dot, Quantum wire and quantum well? नैनो मटेरियल क्या हैं? क्वांटम डॉट, क्वांटम वायर और क्वांटम वेल की मूल अवधारणाओं को संक्षेप में समझाएँ?</p>	CO5	K3
b.	<p>Describe the Meissner effect and differentiate between Type I and Type II superconductors on the basis of their magnetic behavior. मैस्नर प्रभाव का वर्णन करें और चुंबकीय गुणों के आधार पर टाइप I और टाइप II अतिचालकों में अंतर करें।</p>	CO5	K2

QP25EP1_065
/ 09-Jul-2025 8:58:03 AM | 103.175.77.134