

BTECH
(SEM IV) THEORY EXAMINATION 2024-25
ANALOG CIRCUITS

TIME: 3 HRS**M.MARKS: 70**

Note: Attempt all Sections. In case of any missing data; choose suitably.

SECTION A**1. Attempt all questions in brief.****02 x 7 = 14**

Q no.	Question	CO	Level
a.	Define Transconductance and Trans-resistance Amplifiers.	1	K1
b.	Draw T-model equivalent circuit of NPN transistor.	1	K1
c.	Explain Bakhausen criterion.	3	K2
d.	What is the principle of crystal oscillator?	3	K1
e.	Define minimum sustainable voltage and maximum usable load of a Current mirror Circuits	4	K1
f.	What do you mean by slew rate and CMRR of an Op-Amp?	5	K2
g.	A BJT having $\beta = 100$ is biased at a dc collector current of 1 mA. Find the value of g_m and r_e .	2	K3

SECTION B**2. Attempt any three of the following:****07 x 3 = 21**

Q no.	Question	CO	Level
a.	Draw the circuit diagram of single stage CE amplifier using hybrid- π model and find out the expression of i_e , g_m and i_b .	1	K3
b.	Design a shunt-series feedback amplifier and calculate expressions for A_f , R_o and R_{if} .	2	K6
c.	Explain the working of Wien Bridge Oscillator. Derive the expression for feedback factor (β) and frequency (f).	3	K3
d.	Calculate the output voltages of the given differential amplifier.	4	K3
e.	Design the following circuits using op-Amp: i) Unity gain amplifier ii) Integrator circuit	5	K6

BTECH
(SEM IV) THEORY EXAMINATION 2024-25
ANALOG CIRCUITS

TIME: 3 HRS

M.MARKS: 70

SECTION C

3. Attempt any one part of the following:

07 x 1 = 07

Q no.	Question	CO	Level
a.	Draw the circuit diagram of single stage CC amplifier using T-model and find out the expression of voltage gain.	1	K3
b.	Show the effect of multi stage amplification in low and high frequency applications.	1	K6

4. Attempt any one part of the following:

07 x 1 = 07

Q no.	Question	CO	Level
a.	Draw the high frequency model of MOSFET and derive an expression of f_H .	2	K3
b.	Design a series-series feedback amplifier and calculate expressions for A_f , R_o and R_i .	2	K6

5. Attempt any one part of the following:

07 x 1 = 07

Q no.	Question	CO	Level
a.	Draw the circuit of an RC phase shift oscillator using op-amp and derive frequency and condition of oscillation for RC phase shift oscillator.	3	K3
b.	For the Hartley Oscillator, derive an expression for the frequency of oscillation.	3	K3

6. Attempt any one part of the following:

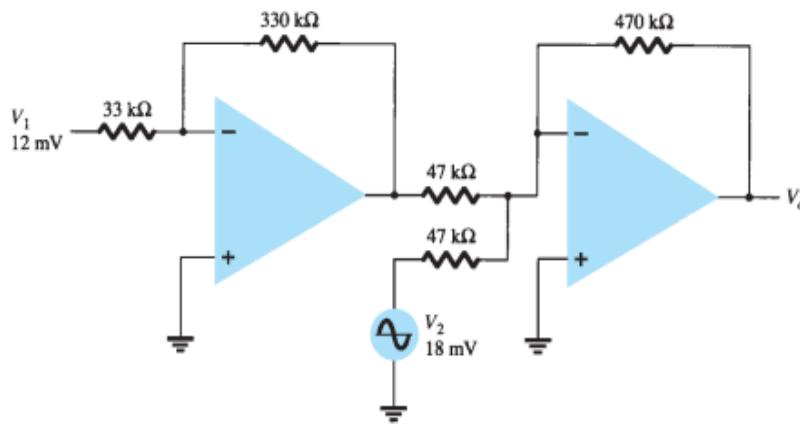
07 x 1 = 07

Q no.	Question	CO	Level
a.	Draw the basic structure of differential amplifier and calculate the differential gain, common mode gain and CMRR.	4	K3
b.	Calculate the current I through each of the transistor Q_2 and Q_3 in the given circuit.	4	K3

Paper id: 252676

Roll No:

--	--	--	--	--	--	--	--	--	--	--	--


BTECH
(SEM IV) THEORY EXAMINATION 2024-25
ANALOG CIRCUITS

TIME: 3 HRS

M.MARKS: 70

7. Attempt any *one* part of the following: $07 \times 1 = 07$

Q no.	Question	CO	Level
a.	Explain the effect of finite loop gain and bandwidth on the performance of Op-Amp. Also define input offset voltage and input offset current.	5	K2
b.	Find out the output voltage (V_o) of the following circuit using ideal Op-Amp.	5	K3

